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Abstract
We report a consistent derivation of a tight-binding formalism, both in the frequency and in the
time domain, for the analysis of electromagnetic energy transfer in single-mode cavity-plasmon
waveguides. Moreover, we derive closed-form solutions of the relevant tight-binding equations,
which describe the response of these waveguides under time-varying excitations by a localized
light source. In this context, we discuss the possibility of efficient single-mode waveguiding
through coupled cavity-plasmon modes in chains of spheroidal silicon nanoparticles in silver at
optical frequencies.

1. Introduction

We have recently reported on light propagation through a
chain of equally spaced identical dielectric nanoparticles in
a metallic host medium by a hopping mechanism between
localized cavity plasmons [1]. The purpose of the present
paper is to propose and analyze a specific design of this
so-called cavity-plasmon waveguide, consisting of spheroidal
silicon nanoparticles in silver, which ensures single-mode
operation at visible frequencies and can be realized in the
laboratory using modern nanofabrication techniques. This
waveguide represents a means of light localization and
transport at subwavelength spatial dimensions, and thus
may enable the fabrication of integrated nanoscale optical
components. On the other hand, single-mode cavity-plasmon
waveguides constitute a class of actual photonic structures
that can be accurately described using simple tight-binding
models, introduced in the first instance in relation to electron
states in solids [2]. This allows one to study a variety of
interesting physical phenomena, including effects associated
with the presence of defects, disorder and nonlinearity, in a
simple and straightforward manner, enabling physical insight.
Electromagnetic (EM) tight-binding formalisms for chains of
weakly coupled cavities have been developed, in the frequency
domain, within the framework of scattering theory [3] as well
as following the traditional eigenmode-expansion approach

1 Author to whom any correspondence should be addressed.

based on the second-order wave equation for the electric
component of the EM field [4]. In this paper, we present a
consistent derivation of a tight-binding formalism for single-
mode cavity-plasmon waveguides, both in the frequency and in
the time domain, starting from the set of the coupled first-order
Maxwell equations. Moreover, we derive spatio-temporal
solutions, which describe the response of these waveguides
under time-varying excitations by a localized light source, in
a closed form.

2. Design of single-mode cavity-plasmon waveguides

A single dielectric cavity of dielectric constant εs and magnetic
permeability μs, in a metal, supports bound states of the EM
field, at the poles of the scattering T matrix. Let us assume, to
begin with, that the optical response of the metal is described
by the simple yet effective Drude model dielectric function [2]

ε(ω) = 1 − ω2
p

ω(ω + iτ−1)
, (1)

where ωp is the bulk plasma frequency and τ is the relaxation
time of the conduction-band electrons, and μ = 1. For
a spherical cavity of radius S, it can be shown that, below
ωp, poles of the T matrix exist on the real frequency axis,
if absorptive losses are neglected, only for TE�(ω), i.e. they
correspond to electric multipole modes. For a small cavity, the
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Figure 1. Frequency bands of linear periodic chains of dielectric nanospheres (εs = 12, μs = 1) in a non-absorbing metal, described by
equation (1) with τ−1 = 0. Left-hand diagram: S = 0.5c/ωp, a = 2c/ωp; middle diagram: S = 0.5c/ωp, a = 1.2c/ωp; right-hand
diagram: S = 0.85c/ωp, a = 2c/ωp. The thick and thin lines show the doubly degenerate and non-degenerate bands, respectively.

eigenfrequencies of these so-called cavity-plasmon (because
they are associated with 2�-pole plasma oscillations at the
surface of the cavity) modes are given by ω� � ωp[(� +
1)/(�εs + � + 1)]1/2, � = 1, 2, 3, . . .. In an infinite linear
chain of such cavities, with their centers separated by a distance
a, the plasmon modes of the individual cavities, of given �,
interact weakly between them and form narrow bands about
ω�. For chains of nanovoids in a Drude metal, these bands
extend over a relatively narrow frequency region of about
0.8ωp [1], i.e. at ultraviolet frequencies. In the present
paper, we consider nanocavities made of a high-dielectric-
constant material, in order to push the waveguide bands down
to optical and infrared frequencies. One of these bands (that
which corresponds to m = 0) is non-degenerate. The rest of
them, which correspond to m = ±1,±2, . . . ,±�, are doubly
degenerate. For relatively large values of a, the interaction
between the cavities is weak and the different 2�-pole bands are
very narrow and well separated from each other (see the left-
hand diagram of figure 1). As a becomes smaller, the width of
the bands increases, and the interaction between bands of the
same symmetry is clearly manifested, as shown in the middle
diagram of figure 1. Moreover, as the size of the cavities
increases, the eigenfrequencies of the plasmon modes of the
single cavity shift to lower frequencies and come closer to each
other, which also leads to a stronger interaction between bands
of the same symmetry, as shown in the right-hand diagram of
figure 1. In any case, the bandwidth decreases with increasing
� because of the stronger localization of the higher 2�-pole
cavity-plasmon modes.

For waveguide applications, the presence of a large
number of interacting bands is undesirable. Therefore, we shall
be concerned with situations where the dipole bands of the
chain of cavities are well separated from the higher-multipole
bands, and we shall study wave propagation at frequencies
within the range of these dipole bands. At these frequencies, it
is reasonable to take into account only the dipole contributions
to the multipole expansions of the EM field. Moreover,
the condition of having the dipole bands isolated from the
higher multipole bands requires a weak interaction between
the cavities which, in turn, allows one to assume only nearest-
neighbor hopping. Making a Laurent (or Taylor) expansion
about ω1 of the relevant quantities within the relatively narrow

frequency range of the dipole bands, we obtain the dispersion
relations in the form [1]

ωμ(k) = ω1 + Wμ cos(ka), (2)

with μ = α, β referring to the non-degenerate and the
doubly degenerate dipole bands, respectively. Wα =
6A[(qa)−2 + (qa)−3] exp(−qa) and Wβ = −3A[(qa)−1 +
(qa)−2 + (qa)−3] exp(−qa), where q ≡ √−ε(ω1)ω1/c
and A ≡ limω→ω1 [(ω − ω1)TE1(ω)] are real quantities.
Equation (2) describes reasonably well the dispersion curves
of the narrow dipole bands of the cavity-plasmon waveguides
under consideration. However, if the cavities are very close
to each other and/or if their size is relatively large (the middle
and right-hand diagrams of figure 1), the exact results deviate
strongly from equation (2), as expected. In this case we
obtain relatively wide bands and a maximum group velocity
of ∼0.03c.

One can design a single-mode cavity-plasmon waveguide,
over a given frequency range, by deforming the spherical shape
of the cavities. In this case the spherical symmetry of the
single cavity is broken and the threefold degeneracy of the
dipole plasmon mode is removed. For example, if instead of
the above spherical cavities with radius S = 0.5c/ωp we have
prolate spheroidal cavities of the same volume, with the major
axis (axis of revolution) 1.07c/ωp long and the minor axis
0.97c/ωp long, the threefold degenerate dipole mode of the
single sphere at 0.350c/ωp splits into a non-degenerate mode
at 0.369ωp and a doubly degenerate mode at 0.341ωp in the
case of the spheroid. A linear periodic chain, with a = 2c/ωp,
of such spheroidal cavities, with their major axis perpendicular
to the chain, generates three non-degenerate bands about the
eigenfrequencies of the dipole plasmon modes of the single
cavity. Interestingly, in the frequency region around 0.369ωp

there is only one non-degenerate band. The modes of this
band are totally transmitted through the chain, however it bends
from cavity to cavity on the plane normal to their major axis,
provided that the distance between nearest neighbors remains
the same [3].

The absorption of light by the constituent materials,
which we have neglected so far, is of course the most
serious shortcoming of the cavity-plasmon waveguide under
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Figure 2. The dipole bands of a linear periodic chain of spheroidal silicon particles without gain (ε ′′
s = 0, left-hand panel) and with gain

(ε ′′
s = −0.6, right-hand panel), in silver. The particles are separated by a distance of a = 40 nm; their major axis (axis of revolution, taken

perpendicular to the chain) is 21.5 nm and their minor axis is 19.3 nm.

consideration. In the presence of losses, the poles of TE�

are shifted off the real axis into the lower complex frequency
half-plane at z� = ω� − iγ �, where γ � > 0 denotes the
inverse of the lifetime of the respective cavity-plasmon mode,
and the waveguide bands extend in the complex frequency
plane, taking the form ωμ(k) − iγμ(k). In the left-hand panel
of figure 2 we show the dispersion diagrams in the complex
frequency plane for a chain of spheroidal silicon nanoparticles
in silver. For the dielectric functions of silicon and silver
we interpolate to the experimental values given in [5] and
[6], respectively. It can be seen that this waveguide ensures
single-mode operation at visible frequencies (about 2.5 eV)
and that γμ(k) does not vary appreciably with k, being roughly
equal to the (negative) imaginary part of the corresponding
eigenfrequency of the single silicon particle in the metal host.

We now explore the possibility of compensating for the
losses by infiltrating the silicon particles with an optical gain
material, which is capable of sustaining an inversion of the
population under excitation by light of a different wavelength
or by electric discharge. The resulting lasing activity can
be well represented by a negative imaginary part (ε ′′

s < 0)
contributing to the dielectric constant of the silicon cavity,
εs = ε ′

s + iε ′′
s , whose value can be easily controlled. In the

right-hand panel of figure 2 we show the dispersion diagrams
in the complex frequency plane if we add an imaginary part
(ε ′′

s = −0.6) to the dielectric constant of silicon. It can be
seen that the bands approach the real axis, which means that
the waveguide modes become less dissipative. If we increase
gain, the absorptive losses are further reduced.

3. Frequency- and time-domain tight-binding
method: formalism and calculations

The dispersion relations of the cavity-plasmon waveguide,
given by equation (2), can be obtained alternatively by an
analysis similar to that used in the standard tight-binding
method for electron states in solids [2]. Such an approach,
based on the second-order wave equation for the electric
component of the EM field, was followed by Yariv et al [4]
in relation to coupled-cavity waveguides. Here we present a
somewhat different derivation, starting from the coupled first-
order Maxwell equations in a medium without free charges and

currents, which we cast into the form(
0 i√

ε0ε(r)
∇ × 1√

μ0μ(r)
−i√

μ0μ(r)
∇ × 1√

ε0ε(r)
0

)

×
( √

ε0ε(r)E(r, t)√
μ0μ(r)H(r, t)

)
= i

∂

∂ t

( √
ε0ε(r)E(r, t)√
μ0μ(r)H(r, t)

)
. (3)

The solutions of equation (3) must fulfill, in addition, the
conditions ∇·[ε(r)E(r, t)] = 0 and ∇·[μ(r)H(r, t)] = 0. The
time-harmonic eigenmodes E(r, t) = Re[E(r) exp(−iωt)],
H(r, t) = Re[H(r) exp(−iωt)] are obtained from the
eigenvalue equation 
̂|F〉 = ω|F〉, where the Maxwell
operator 
̂ is represented by the matrix in the left-hand side

of equation (3) and F(r) = ( √
ε0ε(r)E(r)√
μ0μ(r)H(r)

)
is a vector with

six components Fi (r) ≡ 〈ir|F〉, i = 1, 2, . . . , 6. Adopting the
usual definition of the inner product

(F1, F2) =
∫

d3r
[
ε0ε(r)E∗

1(r) · E2(r)

+ μ0μ(r)H∗
1(r) · H2(r)

]
, (4)

it is straightforward to show that (F1, 
̂F2) = (
̂F1, F2),
i.e. that 
̂ is a Hermitian operator, provided that ε(r) and μ(r)
are real functions.

Let us first consider a non-degenerate eigenmode of a
single cavity, which satisfies the equation


̂c|Fc〉 = ωc|Fc〉, (5)

where ωc is the eigenvalue of the Maxwell operator for
the single cavity, 
̂c. For a periodic array of identical
cavities, centered at sites Rn , we construct a basis of Bloch
eigenfunctions, characterized by wavevectors k, as follows [2]:

Fk(r) =
∑

n′
exp(ik · Rn′)Fc(r − Rn′). (6)

Then, substituting into the corresponding eigenvalue equation

̂|Fk〉 = ωk|Fk〉, we can easily obtain∑

n′
exp(ik · Rn′)

[∫
d3r F∗

c (r − Rn) · (
̂ − 
̂c)Fc(r − Rn′)

+ ωc

∫
d3r F∗

c(r − Rn) · Fc(r − Rn′)

]

=
∑

n′
exp(ik · Rn′)ωk

∫
d3rF∗

c (r − Rn) · Fc(r − Rn′). (7)

3
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In the spirit of tight-binding approximation, because of the
localized nature of the cavity eigenmodes, we first assume
that

∫
d3r F∗

c (r − Rn) · Fc(r − Rn′) ≈ 4Ucδnn′ , where Uc =
1/4

∫
d3r |Fc(r)|2 is precisely the time-averaged EM energy of

the single-cavity mode. Moreover, in the case of a linear chain
of cavities centered at sites Rn = (0, 0, na), neglecting the on-
site matrix element of 
̂ − 
̂c (
̂ and 
̂c differ only outside
the given cavity) and considering only the intersite elements
between nearest neighbors that we define to be equal to 2UcW ,
equation (7) leads directly, without the need of any additional
approximation [4], to the first-order dispersion relation

ωk = ωc + W cos(ka), (8)

which is identical to equation (2) for a single band.
An advantage of the present approach is that we can

also derive a first-order linear differential equation for the
time-evolution of the EM field in the cavities. A pulse that
can be decomposed into Bloch eigenmodes of the waveguide,
i.e. F(r, t) = ∑

k ckFk(r) exp(−iωk t), can be written, using
equation (6), as

F(r, t) =
∑

n′
An′(t)Fc(r − Rn′), (9)

where
An′(t) =

∑
k

ck exp[i(kn′a − ωk t)]. (10)

On the other hand, F(r, t), given by equation (9), satisfies
equation (3), i.e. 
̂F(r, t) = i∂t F(r, t), and, following similar
steps to those leading to equation (8), we obtain

i
dAn(t)

dt
= ωc An(t) + W

2
[An+1(t) + An−1(t)]. (11)

Equation (11), which describes the time evolution of a pulse
propagating along the cavity-plasmon waveguide, has also
been obtained by others [7, 8]. However, our approach
provides a framework for a consistent and straightforward
derivation of both equations (8) and (11). The coefficients
An(t) have a clear physical meaning. Since the energy of
the pulse at time t is 1

2

∫
d3r | F(r, t)|2 = 2Uc

∑
n |An(t)|2,

|An(t)|2 give the energy distribution of the pulse over the
different cavities at the given time. Using equation (8) and the
mathematical identity

exp(−iz cos φ) =
∞∑

n=−∞
(−i)n Jn(z) exp(inφ), (12)

where Jn(z) = (−1)n J−n(z) are the Bessel functions [9],
the general solution (equation (10)) of equation (11) takes the
alternative form

An(t) = exp(−iωct)
∑

k

∞∑
m=−∞

ck exp[ik(n + m)a]

× (−i)m Jm(Wt). (13)

Subject to the initial conditions An(t = 0) = δn0, the above
solution becomes

An(t) = (−i)n exp(−iωct)Jn(Wt), (14)

as can also be verified by direct substitution into equation (11)
and using the recurrence relation 2J ′

n(x) = Jn−1(x) −
Jn+1(x) [9]. Considering the solution for a non-dissipative
system given by equation (14), it is straightforward to show
that the mathematical identity

∑∞
n=−∞ J 2

n (x) = 1 [9] ensures
energy conservation. As discussed in relation to figure 2,
losses can be taken into account by adding a (constant) negative
imaginary part, −iγ c, to the dispersion relation of the cavity-
plasmon waveguide and thus, in this case, equation (14)
becomes An(t) = (−i)n exp(−iωct − γ ct)Jn(Wt).

We now assume a finite chain of cavities n = 1, 2, . . . , N .
The eigenmode of a given cavity, say that at Rp, is continu-
ously excited by a harmonic light source of angular frequency
ωext. In this case, equation (3) takes the form 
̂F(r, t) =
i∂t F(r, t) + bωext exp(−iωextt)Fc(r − Rp), where b is a cou-
pling constant, which leads to the time-dependent equation

i
dAn(t)

dt
= (ωc − iγ c)An(t) + W

2
[An+1(t) + An−1(t)]

− bωext exp(−iωextt)δnp, (15)

where the quantity −iγ c represents the losses, as discussed
above. We seek a particular solution of equation (15) of
the form an exp(−iωextt) and obtain an by solving the re-
sulting linear system Ma = b, where M is a tri-diagonal
N × N (N → ∞) matrix with elements Mnn′ = (ωc −
ωext − iγ c)δnn′ + W

2 δnn′±1 and bn = bωextδnp. It can

readily be shown that u(k), with u(k)
n = exp(ikna)/

√
N ,

where k takes the values 2πν/(Na), ν = 0, 1, . . . , N −
1 is the complete and orthonormal set of eigenvectors of
M (cyclic boundary conditions) and λ(k) = ωc − ωext −
iγ c + W cos(ka) is the corresponding set of eigenval-
ues. Therefore, since the inverse of M is [M−1]nn′ =∑

k u(k)
n u(k)∗

n′ /λ(k) , the particular solution of equation (15)
becomes (bωext/N) exp(−iωextt)

∑
k exp[ik(n − p)a]/[ωc −

ωext − iγ c + W cos(ka)] and, considering that the general so-
lution of the corresponding homogeneous equation (see equa-
tion (10)) is An(t) = ∑

k ck exp{i[kna − (ωc − iγ c)t −
Wt cos(ka)]}, we obtain the general solution of equation (15):

An(t) = exp(−iωct − γ ct)
∑

k

ck exp {i[kna − Wt cos(ka)]}

+ bωext exp(−iωextt)

N

∑
k

exp[ik(n − p)a]
ωc − ωext − iγ c + W cos(ka)

.

(16)

Let us now consider the above (general) solution subject
to the initial conditions An(t = 0) = 0. For
an infinite number of cavities (N → ∞), the sums
over k can be transformed into contour integrals over the
unit circle and, using equation (12), we finally obtain

An(t) = 2bωext

W (z< − z>)

{
exp(−iωextt)z

|n−p|
<

− exp(−iωct − γ ct)

[ ∞∑
m=−n+p+1

(−i)m Jm(Wt)zn−p+m
<

4
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Figure 3. Snapshots showing the time evolution, from t = 0.1 ps
(top) to t = 0.9 ps (bottom) with a step of 0.2 ps, of the EM energy
distribution over the coupled-cavity waveguide of figure 2. The
waveguide is excited by a monochromatic light source with a
frequency at the center of the single band (h̄ωc = 2.508 eV).
Left-hand diagram: full compensation of losses (h̄γ c = 0).
Right-hand diagram: incomplete compensation of losses
(h̄γ c = 4 meV).

+
∞∑

m=n−p+1

(−i)m Jm(Wt)z−n+p+m
<

+ (−i)n−p Jn−p(Wt)

]}
, (17)

where z< and z> are the two roots of the second-order equa-
tion z2 + 2z(ωc − ωext − iγ c)/W + 1 = 0, with |z<| < 1 and
|z>| > 1, respectively.

In figure 3 we show the time evolution, from t = 0.1 to
0.9 ps, of the EM energy distribution over the coupled-
cavity waveguide of figure 2, given by equation (17). The

waveguide is excited by a monochromatic light source with
a frequency of h̄ωc = 2.508 eV, the eigenfrequency of the
non-degenerate mode of the single spheroidal cavity. In the
lossless case (h̄γ c = 0) we see that the field propagates
without attenuation in the two directions of the chain. If
losses are present (h̄γ c = 4 meV) the field fades out and
becomes vanishingly small after about ten lattice constants.
Moreover, the temporal oscillations of the energy, which are
characteristic of the propagating case, are smoothed out after
about 0.9 ps and a steady-state energy distribution is restored in
the system. The above results indicate that, in order to achieve
long-range propagation, absorptive losses in the system should
be overcome.
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